Birdwatch Archive

Birdwatch Note

2023-11-12 12:59:33 UTC - MISINFORMED_OR_POTENTIALLY_MISLEADING

The visualisation is wrong because it does not capture essential properties of linear regression. Most importantly, the strings would have be aligned vertically. Furthermore, linear regression optimizes the mean square error, not the Euclidian distance. https://en.wikipedia.org/wiki/Linear_regression

Written by 450A447C004B408EE41F8F573568104E81D67C53DDF338491DD04C4323E5A551
Participant Details

Original Tweet

Tweet embedding is no longer reliably available, due to the platform's instability (in terms of both technology and policy). If the Tweet still exists, you can view it here: https://twitter.com/foo_bar/status/1723630407713800591

Please note, though, that you may need to have your own Twitter account to access that page. I am currently exploring options for archiving Tweet data in a post-API context.

All Information

  • ID - 1723686974555357252
  • noteId - 1723686974555357252
  • participantId -
  • noteAuthorParticipantId - 450A447C004B408EE41F8F573568104E81D67C53DDF338491DD04C4323E5A551 Participant Details
  • createdAtMillis - 1699793973946
  • tweetId - 1723630407713800591
  • classification - MISINFORMED_OR_POTENTIALLY_MISLEADING
  • believable -
  • harmful -
  • validationDifficulty -
  • misleadingOther - 0
  • misleadingFactualError - 1
  • misleadingManipulatedMedia - 0
  • misleadingOutdatedInformation - 0
  • misleadingMissingImportantContext - 1
  • misleadingUnverifiedClaimAsFact - 0
  • misleadingSatire - 0
  • notMisleadingOther - 0
  • notMisleadingFactuallyCorrect - 0
  • notMisleadingOutdatedButNotWhenWritten - 0
  • notMisleadingClearlySatire - 0
  • notMisleadingPersonalOpinion - 0
  • trustworthySources - 1
  • summary
    • The visualisation is wrong because it does not capture essential properties of linear regression. Most importantly, the strings would have be aligned vertically. Furthermore, linear regression optimizes the mean square error, not the Euclidian distance. https://en.wikipedia.org/wiki/Linear_regression

Note Status History

createdAt timestampMillisOfFirstNonNMRStatus firstNonNMRStatus timestampMillisOfCurrentStatus currentStatus timestampMillisOfLatestNonNMRStatus mostRecentNonNMRStatus participantId
2023-11-12 12:59:33 UTC
(1699793973946)
2023-11-12 15:48:07 UTC
(1699804087296)
CURRENTLY_RATED_HELPFUL 2023-11-13 02:43:37 UTC
(1699843417158)
CURRENTLY_RATED_HELPFUL 2023-11-12 15:48:07 UTC
(1699804087296)
CURRENTLY_RATED_HELPFUL

Note Ratings

rated at rated by
2023-11-12 10:32:34 -0600 Rating Details
2023-11-12 10:32:04 -0600 Rating Details
2023-11-12 10:11:57 -0600 Rating Details
2023-11-12 09:41:36 -0600 Rating Details
2023-11-12 09:31:28 -0600 Rating Details
2023-11-12 09:26:42 -0600 Rating Details
2023-11-12 09:25:10 -0600 Rating Details
2023-11-12 09:22:44 -0600 Rating Details
2023-11-12 09:22:01 -0600 Rating Details
2023-11-12 09:16:26 -0600 Rating Details
2023-11-12 09:13:36 -0600 Rating Details
2023-11-12 09:10:45 -0600 Rating Details
2023-11-12 09:03:41 -0600 Rating Details
2023-11-12 08:54:20 -0600 Rating Details
2023-11-12 08:51:32 -0600 Rating Details
2023-11-12 08:49:59 -0600 Rating Details
2023-11-12 08:47:18 -0600 Rating Details
2023-11-12 08:46:55 -0600 Rating Details
2023-11-12 08:46:07 -0600 Rating Details
2023-11-12 08:46:01 -0600 Rating Details
2023-11-12 08:45:26 -0600 Rating Details
2023-11-12 08:43:40 -0600 Rating Details
2023-11-12 08:43:36 -0600 Rating Details
2023-11-12 08:37:51 -0600 Rating Details
2023-11-12 08:37:25 -0600 Rating Details
2023-11-12 08:36:32 -0600 Rating Details
2023-11-12 08:30:57 -0600 Rating Details
2023-11-12 08:29:12 -0600 Rating Details
2023-11-12 08:25:27 -0600 Rating Details
2023-11-12 08:25:07 -0600 Rating Details
2023-11-12 08:22:45 -0600 Rating Details
2023-11-12 08:21:02 -0600 Rating Details
2023-11-12 08:16:25 -0600 Rating Details
2023-11-12 08:14:29 -0600 Rating Details
2023-11-12 08:09:12 -0600 Rating Details
2023-11-12 08:07:14 -0600 Rating Details
2023-11-12 08:06:46 -0600 Rating Details
2023-11-12 08:06:42 -0600 Rating Details
2023-11-12 07:56:17 -0600 Rating Details
2023-11-12 07:52:32 -0600 Rating Details
2023-11-12 07:50:19 -0600 Rating Details
2023-11-12 07:49:37 -0600 Rating Details
2023-11-12 07:46:24 -0600 Rating Details
2023-11-12 07:46:21 -0600 Rating Details
2023-11-12 07:41:10 -0600 Rating Details
2023-11-12 07:40:11 -0600 Rating Details
2023-11-12 07:38:38 -0600 Rating Details
2023-11-12 07:38:06 -0600 Rating Details
2023-11-12 07:37:16 -0600 Rating Details
2023-11-12 07:37:01 -0600 Rating Details
2023-11-12 07:36:55 -0600 Rating Details
2023-11-12 07:36:50 -0600 Rating Details
2023-11-12 07:36:42 -0600 Rating Details
2023-11-12 07:35:53 -0600 Rating Details
2023-11-12 07:35:09 -0600 Rating Details
2023-11-12 07:29:55 -0600 Rating Details
2023-11-12 07:29:55 -0600 Rating Details
2023-11-12 07:29:22 -0600 Rating Details
2023-11-12 07:29:18 -0600 Rating Details
2023-11-12 07:29:18 -0600 Rating Details
2023-11-12 07:27:24 -0600 Rating Details
2023-11-12 07:20:44 -0600 Rating Details
2023-11-12 07:19:20 -0600 Rating Details
2023-11-12 07:17:18 -0600 Rating Details
2023-11-12 07:16:24 -0600 Rating Details
2023-11-12 07:14:06 -0600 Rating Details
2023-11-12 07:09:47 -0600 Rating Details
2023-11-12 10:10:30 -0600 Rating Details